Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Heliyon ; 10(5): e27327, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495192

RESUMO

Background: Nineteen non-antibacterials were examined to show that their consumption for treatment of other diseases may inhibit Helicobacter pylori. Four antibiotics were used for comparison. Materials and methods: Agar dilution method was used to examine the susceptibility of 20 H. pylori isolates to 4 antibiotics; metronidazole (MTZ), clarithromycin (CLR), amoxicillin (AMX), tetracycline (TET) and 19 non-antibacterials; proton pump inhibitors (PPIs), H2-blockers, bismuth subsalicylate (BSS), antifungals, statins, acetaminophen (ACE), aspirin (ASA), B-vitamins (B-Vits; Vit B1, Vit B6 and Vit Bcomplex) and vitamin C (Vit C). Blood agar plates were prepared with different concentrations of drugs and spot-inoculated with bacterial suspensions. Plates were incubated at 37 °C under microaerobic conditions and examined after 3-5 days. The isolate #20 that was mucoid and resistant to 19 drugs, including MTZ and SMV was tested against combined MTZ (8 µg/mL) and SMV (100 µg/mL). Results were analyzed statistically. Results: Minimum inhibitory concentrations (MICs, µg/mL) of drugs and the frequency of susceptible H. pylori were determined as MTZ (8, 80%), CLR (2, 90%), AMX (1, 100%), TET (0.5, 70%), PPIs (8-128, 80%), H2-blockers (2000-8000, 75-80%), BSS (15, 85%), antifungals (64-256, 30-80%), statins (100-250, 35-90%), ACE (40, 75%), ASA (800, 75%), B-Vits (5000-20000, 80-100%) and Vit C (2048, 85%). Susceptibility of H. pylori isolates to 16 out of 19 non-antimicrobials (75-100%) was almost similar to those of antibiotics (70-100%) (P-value >0.05). The highest susceptibility rate (100%) belonged to Vit B1, Vit B6 and AMX. Out of 20 H. pylori isolates, 17 (85%) were susceptible to ≥13 non-antimicrobials and 3 (15%) were susceptible to < 13 (P-value <0.05). Mucoid H. pylori showed susceptibility to combination of MTZ and SMV. Conclusions: Most of non-antibacterials inhibited H. pylori isolates, similar to antibiotics but their MICs exceeded those of antibiotics and their plasma concentrations. At low plasma concentration, non-antimicrobials may act as weak antibacterials, antibiotic adjuvants and immunostimulators.

3.
Arch Pharm (Weinheim) ; : e2300628, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501879

RESUMO

In diabetes mellitus, amylase and glucosidase enzymes are the primary triggers. The main function of these enzymes is to break macromolecules into simple sugar units, which directly affect blood sugar levels by increasing blood permeability. To overcome this metabolic effect, there is a need for a potent and effective inhibitor capable of suppressing the enzymatic conversion of sugar macromolecules into their smaller units. Herein, we reported the discovery of a series of substituted triazolo[4,3-b][1,2,4]triazine derivatives as α-glucosidase and α-amylase inhibitors. All target compounds demonstrated significant inhibitory activities against α-glucosidase and α-amylase enzymes compared with acarbose as the positive control. The most potent compound 10k, 2-[(6-phenyl-[1,2,4]triazolo[4,3-b][1,2,4]triazin-3-yl)thio]-N-[4-(trifluoromethyl)phenyl]acetamide, demonstrated IC50 values of 31.87 and 24.64 nM against α-glucosidase and α-amylase enzymes, respectively. To study their mechanism of action, kinetic studies were also done, which determined the mode of inhibition of both enzymes. Molecular docking was used to confirm the binding interactions of the most active compounds.

4.
Adv Colloid Interface Sci ; 325: 103119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447243

RESUMO

Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.


Assuntos
Nanoestruturas , Polietilenoimina , Polietilenoimina/química , Transfecção , Peso Molecular , Polímeros
5.
Mol Divers ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466553

RESUMO

Many human cancers have been associated with the deregulation of the mesenchymal-epithelial transition factor tyrosine kinase (MET) receptor, a promising drug target for anticancer drug discovery. Herein, we report the discovery of a novel structure of potent chalcone-based derivatives type II c-Met inhibitors which are comparable to Foretinib (IC50 = 14 nM) as a potent reference drug. Based on our design strategy, we also expected an anti-tubulin activity for the compounds. However, the weak inhibitory effects on microtubules were confirmed by cell cycle analyses implicated that the observed cytotoxicity against HeLa cells probably was not derived from tubulin inhibition. Compounds 14q and 14k with IC50 values of 24 nM and 45 nM, respectively, demonstrated favorable inhibition of MET kinase activity, and desirable bonding interactions in the ligand-MET enzyme complex stability in molecular docking studies.

6.
BMC Chem ; 18(1): 30, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347613

RESUMO

A novel series of 1-(5-((6-nitroquinazoline-4-yl)thio)-1,3,4-thiadiazol-2-yl)-3-phenylurea derivatives 8 were designed and synthesized to evaluate their cytotoxic potencies. The structures of these obtained compounds were thoroughly characterized by IR, 1H, and 13C NMR, MASS spectroscopy and elemental analysis methods. Additionally, their in vitro anticancer activities were investigated using the MTT assay against A549 (human lung cancer), MDA-MB231 (human triple-negative breast cancer), and MCF7 (human hormone-dependent breast cancer). Etoposide was used as a reference marketed drug for comparison. Among the compounds tested, compounds 8b and 8c demonstrated acceptable antiproliferative activity, particularly against MCF7 cells. Considering the potential VEGFR-2 inhibitor potency of these compounds, a molecular docking study was performed for the most potent compound, 8c, to determine its probable interactions. Furthermore, computational investigations, including molecular dynamics, frontier molecular orbital analysis, Fukui reactivity descriptor, electrostatic potential surface, and in silico ADME evaluation for all compounds were performed to illustrate the structure-activity relationship (SAR).

7.
ACS Omega ; 8(45): 42212-42224, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024677

RESUMO

In the present paper, a facile and efficient synthetic procedure has been applied to obtain dihydrodipyrrolo[1,2-a:2',1'-c]pyrazine-2,3-dicarboxylates (5a-s), which have subsequently gone through the cyclization in the presence of hydrazine hydrate to afford 12-aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3-d]pyridazine-8(9H)-ones (7a-q). The molecular structures of these novel compounds were extensively examined through the analysis of spectroscopic data in combination with X-ray crystallography techniques. Following that, the in vitro cytotoxic activities of all derivatives against three human cancer cell lines (Panc-1, PC3, and MDA-MB-231) were comprehensively evaluated alongside the assessment on normal human dermal fibroblast (HDF) cells using the MTT assay. Among the compounds, the 3-nitrophenyl derivative (7m) from the second series showed the best antiproliferative activity against all tested cell lines, particularly against Panc-1 cell line, (IC50 = 12.54 µM), being nearly twice as potent as the standard drug etoposide. The induction of apoptosis and sub-G1 cell cycle arrest in Panc-1 cancer cells by compound 7m was confirmed through further assessment. Moreover, the inhibition of kinases and the induction of cellular apoptosis by compound 7m in Panc-1 cancer cells were validated using the Western blotting assay.

8.
Sci Rep ; 13(1): 14606, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670132

RESUMO

This study introduces a simple method for preparing a new generation of MnO2 nanomaterials (MNMs) using tannic acid as a template. Two shapes of MnO2 NMs, flower-like M1-MnO2 and near-spherical M2-MnO2, were prepared and compared as dual-active nanozymes and contrast agents in magnetic resonance imaging (MRI). Various parameters, including the crystallinity, morphology, magnetic saturation (Ms), surface functionality, surface area, and porosity of the MNMs were investigated. Flower-like M1-MnO2 NMs were biocompatible and exhibited pH-sensitive oxidase and peroxidase mimetic activity, more potent than near-spherical M2-MnO2. Furthermore, the signal intensity and r1 relaxivity strongly depended on the crystallinity, morphology, pore size, and specific surface area of the synthesized MNMs. Our findings suggest that flower-like M1-MnO2 NM with acceptable dual-enzyme mimetic (oxidase-like and peroxidase-like) and T1 MRI contrast activities could be employed as a promising theranostic system for future purposes.


Assuntos
Meios de Contraste , Nanoestruturas , Compostos de Manganês , Óxidos , Peroxidase , Imageamento por Ressonância Magnética , Peroxidases
9.
Bioorg Chem ; 140: 106831, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683538

RESUMO

Considering the fundamental role of protein kinases in the mechanism of protein phosphorylation in critical cellular processes, their dysregulation, especially in cancers, has underscored their therapeutic relevance. Imidazopyridines represent versatile scaffolds found in abundant bioactive compounds. Given their structural features, imidazopyridines have possessed pivotal potency to interact with different protein kinases, inspiring researchers to carry out numerous structural variations. In this comprehensive review, we encompass an extensive survey of the design and biological evaluations of imidazopyridine-based small molecules as potential agents targeting diverse kinases for anticancer applications. We describe the structural elements critical to inhibitory potency, elucidating their key structure-activity relationships (SAR) and mode of actions, where available. We classify these compounds into two groups: Serine/threonine and Tyrosine inhibitors. By highlighting the promising role of imidazopyridines in kinase inhibition, we aim to facilitate the design and development of more effective, targeted compounds for cancer treatment.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imidazóis/farmacologia , Fosforilação , Piridinas/farmacologia , Humanos
10.
Sci Rep ; 13(1): 15672, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735489

RESUMO

α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a-c and 11a-o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, 1H and 13C NMR spectroscopy, as well as mass spectrometry and elemental analysis. Subsequently, the inhibitory activities of these compounds were evaluated against Saccharomyces cerevisiae α-glucosidase. In present study, acarbose was utilized as a positive control. These imidazoquinazolines exhibited excellent to great inhibitory potencies with IC50 values ranging from 12.44 ± 0.38 µM to 308.33 ± 0.06 µM, which were several times more potent than standard drug with IC50 value of 750.0 ± 1.5 µM. Representatively, compound 11j showed remarkable anti-α-glucosidase potency with IC50 = 12.44 ± 0.38 µM, which was 60.3 times more potent than positive control acarbose. To explore the potential inhibition mechanism, further evaluations including kinetic analysis, circular dichroism, fluorescence spectroscopy, and thermodynamic profile were carried out for the most potent compound 11j. Moreover, molecular docking studies and in silico ADME prediction for all imidazoquinazolines 6a-c and 11a-o were performed to reveal their important binding interactions, as well as their physicochemical and drug-likeness properties, respectively.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Humanos , Inibidores de Glicosídeo Hidrolases/farmacologia , Acarbose/farmacologia , Quinazolinas/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cinética , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae , alfa-Glucosidases
11.
Mol Divers ; 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420079

RESUMO

Bacterial resistance to fluoroquinolone has been increasing at an alarming rate worldwide. In an attempt to find more potent anti-bacterial agents, an efficient, straightforward protocol was performed to obtain a large substrate scope of novel ciprofloxacin and sarafloxacin analogues conjugated with 4-(arylcarbamoyl)benzyl 7a-ab. All prepared compounds were evaluated for their anti-bacterial activities against three gram-positive strains (Methicillin resistant staphylococcus aureus (MRSA), Staphylococcus aureus, and Enterococcus faecalis) as well as three gram-negative strains (Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli) through three standard methods including broth microdilution, agar-disc diffusion, and agar-well diffusion assays. Most of the compounds exhibited great to excellent anti-bacterial potencies against MRSA and S. aureus. Among the targeted compounds, derivative 7n exhibited great antibacterial potency, which was noticeably more potent than parent ciprofloxacin. Subsequently, a molecular docking study was performed for this compound to find out its probable binding mode with the active site of S. aureus DNA gyrase (PDB ID: 2XCT).

12.
Eur J Med Chem ; 259: 115626, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37453330

RESUMO

Angiogenesis, the formation of new blood vessels from the existing vasculature, is pivotal in the migration, growth, and differentiation of endothelial cells in normal physiological conditions. In various types of tumour microenvironments, dysregulated angiogenesis plays a crucial role in supplying oxygen and nutrients to cancerous cells, leading to tumour size growth. VEGFR-2 tyrosine kinase has been extensively studied as a critical regulator of angiogenesis; thus, inhibition of VEGFR-2 has been widely used for cancer treatments in recent years. Quinazoline nucleus is a privileged and versatile scaffold with a broad range of pharmacological activity, especially in the field of tyrosine kinase inhibitors with more than twenty small molecule inhibitors approved by the US Food and Drug Administration in the last two decades. As of now, the U.S. FDA has approved eleven small chemical inhibitors of VEGFR-2 for various types of malignancies, with a prime example being vandetanib, a quinazoline derivative, which is a multi targeted kinase inhibitor used for the treatment of late-stage medullary thyroid cancer. Despite of prosperous discovery and development of VEGFR-2 down regulator drugs, there still exists limitations in clinical efficacy, adverse effects, a high rate of clinical discontinuation and drug resistance. Therefore, there is an urgent need for the design and synthesis of more selective and effective inhibitors to tackle these challenges. Through the gathering of this review, we have strived to broaden the extent of our view over the entire scope of quinazoline-based VEGFR-2 inhibitors. Herein, we give an overview of the importance and advancement status of reported structures, highlighting the SAR, biological evaluations and their binding modes.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores da Angiogênese/química , Antineoplásicos/farmacologia , Células Endoteliais/metabolismo , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Microambiente Tumoral , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
13.
BMC Chem ; 17(1): 66, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365646

RESUMO

In this work, a novel series of pyridazine-triazole hybrid molecules were prepared and evaluated as inhibitors of rat intestinal α-glucosidase enzyme. Amongst all newly synthesized compounds, 10k showed good inhibition in the series with IC50 value of 1.7 µM which is 100 folds stronger than positive control, acarbose. The cytotoxicity revealed that this compound is not toxic against normal cell line, HDF. The docking studies showed that triazole ring plays an important role in the binding interactions with the active site. The insertion of compound 10k into the active pocket of α-glucosidase and formation of hydrogen bonds with Leu677 was observed from docking studies. The kinetic studies revealed that this compound has uncompetitive mode of inhibition against α-glucosidase enzyme.

14.
Sci Rep ; 13(1): 7999, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198239

RESUMO

A practical technique was applied to fabricate CuO nanostructures for use as the electrocatalyst. The green synthesis of cupric oxide nanoparticles (CuO NPs) via co-precipitation is described in this paper using an aqueous extract of Origanum majorana as both reductant and stabilizer, accompanied by characterization via XRD, SEM, and FTIR. The XRD pattern revealed no impurities, whereas SEM revealed low agglomerated spherical particles. CuO nanoparticles and multi wall carbon nanotubes (MWCNTs) have been used to create a modified carbon paste electrode. Voltammetric methods were used to analyze Tramadol using CuONPs/MWCNT as a working electrode. The produced nanocomposite showed high selectivity for Tramadol analysis with peak potentials of ~ 230 mV and ~ 700 mV and Excellent linear calibration curves for Tramadol ranging from 0.08 to 500.0 µM with a correlation coefficient of 0.9997 and detection limits of 0.025. Also, the CuO NPs/MWCNT/CPE sensor shows an an appreciable sensitivity of 0.0773 µA/µM to tramadol. For the first time the B3LYP/LanL2DZ, quantum method was used to compute DFT to determine nanocomposites' connected energy and bandgap energy. Eventually, CuO NPs/CNT was shown to be effective in detecting Tramadol in actual samples, with a recovery rate ranging from 96 to 104.3%.


Assuntos
Nanocompostos , Nanotubos de Carbono , Tramadol , Nanotubos de Carbono/química , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos
15.
Toxicol Appl Pharmacol ; 467: 116497, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003365

RESUMO

Novel psychoactive substances (NPS) consumption has increased in recent years, thus NPS-induced cognitive decline is a current source of concern. Alpha-pyrrolidinovalerophenone (α-PVP), as a member of NPS, is consumed throughout regions like Washington, D.C., Eastern Europe, and Central Asia. Mitochondrial dysfunction plays an essential role in NPS-induced cognitive impairment. Meanwhile, no investigations have been conducted regarding the α-PVP impact on spatial learning/memory and associated mechanisms. Consequently, our study investigated the α-PVP effect on spatial learning/memory and brain mitochondrial function. Wistar rats received different α-PVP doses (5, 10, and 20 mg/kg) intraperitoneally for 10 sequential days; 24 h after the last dose, spatial learning/memory was evaluated by the Morris Water Maze (MWM). Furthermore, brain mitochondrial protein yield and mitochondrial function variables (Mitochondrial swelling, succinate dehydrogenase (SDH) activity, lipid peroxidation, Mitochondrial Membrane Potential (MMP), Reactive oxygen species (ROS) level, brain ADP/ATP proportion, cytochrome c release, Mitochondrial Outer Membrane (MOM) damage) were examined. α-PVP higher dose (20 mg/kg) significantly impaired spatial learning/memory, mitochondrial protein yield, and brain mitochondrial function (caused reduced SDH activity, increased mitochondrial swelling, elevated ROS generation, increased lipid peroxidation, collapsed MMP, increased cytochrome c release, elevated brain ADP/ATP proportion, and MOM damage). Moreover, the lower dose of α-PVP (5 mg/kg) did not alter spatial learning/memory and brain mitochondrial function. These findings provide the first evidence regarding impaired spatial learning/memory following repeated administration of α-PVP and the possible role of brain mitochondrial dysfunction in these cognitive impairments.


Assuntos
Encefalopatias , Aprendizagem Espacial , Ratos , Animais , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Citocromos c/metabolismo , Aprendizagem em Labirinto , Mitocôndrias , Encéfalo , Trifosfato de Adenosina/metabolismo , Hipocampo , Estresse Oxidativo
16.
Bioorg Chem ; 133: 106383, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764231

RESUMO

Tyrosine protein kinases (TKs) have been proved to play substantial roles on many cellular processes and their overexpression tend to be found in various types of cancers. Therefore, over recent decades, numerous tyrosine protein kinase inhibitors particularly epidermal growth factor receptor (EGFR) inhibitors have been introduced to treat cancer. Present study describes a novel series of imidazo[1,2-a]quinazolines 18 as potential -inhibitors. These imidazoquinazolines (18a and 18o, in particular) had great anti-proliferative activities with IC50 values in the micromolar (µM) range against PC3, HepG2, HeLa, and MDA-MB-231 comparing with Erlotinib as reference marketed drug. Further evaluations on some derivatives revealed their potential to induce apoptotic cell death and cell growth arrest at G0 phase of the cell cycle. Afterwards, the kinase assay on the most potent compounds 18a and 18o demonstrated their inhibitory potencies and selectivity toward EGFR (with EGFR-IC50 values of 82.0 µM and 12.3 µM, respectively). Additionally, western blot analysis on these compounds 18a and 18o exhibited that they inhibited the phosphorylation of EGFR and its downstream molecule extracellular signal-regulated kinase (ERK1/2). However, the level of B-Actin phosphorylation was not changed. Finally, density functional theory calculations, docking study, and independent gradient model (IGM) were performed to illustrate the structure-activity relationship (SAR) and to assess the interactions between proteins and ligands. The results of molecular docking studies had great agreement with the obtained EGFR inhibitory results through in vitro evaluations.


Assuntos
Antineoplásicos , Quinazolinas , Isótopos de Oxigênio/farmacologia , Simulação de Acoplamento Molecular , Quinazolinas/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Relação Estrutura-Atividade , Proliferação de Células , Inibidores de Proteínas Quinases
17.
Arch Pharm (Weinheim) ; 356(3): e2200349, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36408898

RESUMO

An important role has been considered for the vascular endothelial growth factor receptor 2 (VEGFR-2) in the angiogenesis process, so that its inhibition is an important scientific way for cancer treatment. In this work, new thienopyrimidine derivatives were synthesized and evaluated. Compared with sorafenib, the majority of the target compounds had antiproliferative activity against the PC3, HepG2, MCF7, SW480, and HUVEC cell lines, especially 9h with IC50 values of 4.5-15.1 µM, confirming the noticeable cytotoxic effects on the listed cell lines (PC3, HepG2, SW480, and HUVEC). Analyses by flow cytometry on SW480 and HUVEC cells revealed that 9n, 9k, 9h, and 9q led to apoptotic cell death. The result of the chick chorioallantoic membrane assay showed that 9h effectively reduced the number of corresponding blood vessels. Finally, the inhibitory effect on VEGFR-2 phosphorylation was considered as the outcome of Western blot analysis of compound 9h.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Estrutura Molecular , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Desenho de Fármacos
18.
Sci Rep ; 12(1): 21509, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513776

RESUMO

Silver oxide nanoparticles have various biomedical and pharmaceutical applications. However, conventional nanofabrication of Ag2O is associated with the use of toxic chemicals and organic solvents. To circumvent this hurdle, herein silver oxide quantum dots (Ag2O-QDs) were synthesized quickly (3 min) via the use of ultrasonic irradiation and plant-extract. Additionally, due to ultrasonic irradiation's effect on cell-wall destruction and augmentation of extraction efficiency, ultrasonic was also used in the preparation of Mentha pulegium and Ficus carica extracts (10 min, r.t) as natural eco-friendly reducing/capping agents. The UV-Vis result indicated a broad absorption peak at 400-500 nm. TEM/SEM analysis showed that ultrasound introduced a uniform spherical particle and significantly reduced particle size compared to the conventional heating method (∼ 9 nm vs. ∼ 100 nm). Silver and oxygen elements were found in the bio-synthesized Ag2O by EDS. The FTIR and phenol/flavonoid tests revealed the presence of phenol and flavonoid associated with the nanoparticles. Moreover, nanoparticles exhibited antioxidant/antibacterial/antifungal activities. The MIC and MBC results showed the Ag2O QDs synthesized with M. pulegium extract have the highest antibacterial activity against E. coli (MBC = MIC:15.6 ppm), which were significantly different from uncoated nanoparticles (MBC = MIC:500 ppm). The data reflects the role of phyto-synthesized Ag2O-QDs using ultrasonic-irradiation to develop versatile and green biomedical products.


Assuntos
Ficus , Mentha pulegium , Nanopartículas Metálicas , Antioxidantes/farmacologia , Antifúngicos/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Flavonoides/farmacologia , Fenóis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Bioorg Chem ; 129: 106140, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150231

RESUMO

In the current study, twenty-five indole-carbohydrazide derivatives linked to different aryl substitutions were rationally designed and synthesized. The structures of all derivatives were confirmed using different spectroscopic techniques including 1H NMR, 13C NMR, Mass spectrometry, and elemental analysis. The tyrosinase inhibitory activities of all synthetic compounds exhibited IC50 values in the range of 0.070 to > 100 µM. Structure-activity relationships showed that compounds 4f (R = 4-OH, IC50 = 0.070 µM), 8f (R = 4-OH, IC50 = 0.072 µM), and 19e (IC50 = 0.19 µM) with para-OH substituent at the R position was found to be the most active members of all three tested series. Kinetic studies exhibited that compounds 4f, 8f, and 19e are mixed-type inhibitors. Furthermore, toxicity and cell-based anti-melanogenesis assessments were performed on the most potent derivatives and it was shown that 4f, 8f, and 19e had no toxicity at 8 µM and reduced the percent of melanin content to 68.43, 72.61, 73.47 at 8 µM, respectively. In silico analyses of absorption, distribution, metabolism, and excretion (ADME) profile of synthesized compounds showed that these molecules followed drug-likeness rules and acceptable predictive ADMET features. Results of the docking study were almost in line with biological results with ChemPLP values of 53.56 to 79.33. Also, the docking study showed the critical interactions of potent inhibitors with the active site of the enzyme which affects the potency of the synthesized hybrids. Based on molecular dynamic simulations, compound 4f exhibited pronounced interaction with the critical residues of the tyrosinase active site so that the indole ring participated in H-bond interaction with Gly281 and 4-hydroxy benzylidene recorded another H-bond interaction with Asp289 plus hydrophobic interactions with Phe292. Hydrazide linker also exhibited three H-bond interactions with His263 and Gly281.


Assuntos
Antioxidantes , Monofenol Mono-Oxigenase , Antioxidantes/farmacologia , Cinética , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/química , Hidrazinas , Relação Estrutura-Atividade , Indóis/farmacologia , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...